Wissenschaftler haben in einem vom Fraunhofer-Institut für Solare Energiesysteme ISE angeführten Verbundprojekt unter Beteiligung der Technischen Universität Ilmenau einen weltweit noch nicht erreichten Wirkungsgrad spezieller Solarzellen erzielt:

24,3 Prozent des von monolithischen, auf Silizium gewachsenen III-V-Dreifachzellen aufgenommenen Sonnenlichts werden in elektrische oder chemische Energie umgewandelt – ein Meilenstein bei der Entwicklung neuer Solarzellen, die künftig konventionelle Silizium-Solarzellen ablösen könnten.
Vor allem sind die neuen Zellen aber auch bei der direkten solaren Wasserspaltung zur Gewinnung von Wasserstoff einsetzbar, der für viele als regenerativer Energieträger der Zukunft gilt.

Die Forschungsergebnisse des MehrSi-Projekts stellen auch bei der Entwicklung wettbewerbsfähiger Zellen zur direkten solaren Wasserspaltung einen Meilenstein dar. In solchen photoelektrochemischen Zweifachzellen wird Wasser mit Hilfe von Sonnenlicht hocheffizient und direkt in seine Bestandteile Wasserstoff und Sauerstoff zerlegt – Experten sprechen daher bei dem Prozess auch von „künstlicher Photosynthese“ oder von „künstlichen Blättern“.
Prof. Thomas Hannappel, Leiter des Fachgebiets „Grundlagen von Energiematerialien“, der die Forschungsarbeiten an der TU Ilmenau koordiniert hat, erklärt die Vorteile der neuen Zell-Technologie: „Mit einer einfachen Solarzelle ohne zusätzliche Komponenten ist eine effiziente, direkte Zerlegung von Wasser in seine Bestandteile durch Sonnenlicht nicht möglich. Dies kann erst durch Mehrfachzellen, wie sie im MehrSi-Projekt entwickelt wurden, erreicht werden. Damit ergibt sich ein neuer Zugang zur solaren Wasserstofferzeugung und -speicherung.“ Prof. Hannappel ist sich sicher, dass Wasserstoff als Speichermedium in einem nachhaltigen Energiesystem der Zukunft eine zentrale Rolle spielen wird.

Partner des Fraunhofer ISE im soeben erfolgreich abgeschlossenen „MehrSi“-Projekt waren neben der TU Ilmenau die Philipps-Universität Marburg und der Anlagenhersteller Aixtron SE.
Weitere Informationen: TU-Pressemitteilung 30.10.2019

Vorheriger Beitrag Nächster Beitrag